алгоритм симплекс метода

алгоритм симплекс метода учебный

Алгоритм СМ 3. Применение СМ в различных типах задач ЛП Реализация программы для решения симплекс-методом Мамошкин А. М. (СПбГУ ИТМО КТ)

Обучение
Linux Unix Алгоритмические языки Аналоговые и гибридные вычислительные устройства Архитектура микроконтроллеров Введение в разработку распределенных информационных систем Введение в численные методы Дискретная математика Информационное обслуживание пользователей Информация и моделирование в управлении производством Компьютерная графика Математическое и компьютерное моделирование Моделирование Нейрокомпьютеры Проектирование программ диагностики компьютерных систем и сетей Проектирование системных программ Системы счисления Теория статистики Теория оптимизации Уроки AutoCAD 3D Уроки базы данных Access Уроки Orcad Цифровые автоматы Шпаргалки по компьютеру Шпаргалки по программированию Экспертные системы Элементы теории информации Главная Тексты статей Добавить статьи Форум Контакты
Решение задачи линейного программирования геометрическим методом является наглядным в случае двух или даже трех переменных. Для случая же большего числа переменных геометрический метод становится невозможным.
При решении задачи линейного программирования графическим методом фактически перебирали все вершины многоугольной допустимой области. Такой перебор можно сократить, если учитывать линейность целевой функции, чтобы каждая следующая вершина была лучше предыдущей. Идея последовательного улучшения решения легла в основу симплекс-метода решения задач линейного программирования.
Для реализации симплекс-метода необходимо определить: 1) первоначальное допустимое решение задачи, 2) правило перехода к лучшему решению, 3) критерий проверки оптимальности найденных решений. Для этого составляются различные алгоритмы симплекс-метода. Рассмотрим один из них для нахождения максимального значения целевой функции на следующем примере.

Алгоритм симплекс-метода для задачи на минимум - раздел Образование, Конспект лекций МЕТОДЫ ОПТИМИЗАЦИИ Шаг 0. Подготовительный Этап.

Найти максимальное значение функции , если переменные удовлетворяют системе ограничений:
1. Вводим новые переменные , с помощью которых неравенства системы преобразуем в уравнения:
У коэффициентов целевой функции меняем знак или записываем ее в виде . Заполняем первую симплексную таблицу, в нулевой строке записываем х 1, х 2 и (свободные коэффициенты). В нулевом столбце – х 3, х 4, х 5 и F. Заполняем эту таблицу по полученной системе уравнений и преобразованной целевой функции.
-2
-1
-2
-3
Проверяем критерий оптимальности на нахождение максимального значения: в последней строке все коэффициенты должны быть положительными. Этот критерий не выполняется, переходим к составлению второй таблицы.
2. Находим разрешающий элемент первой таблицы следующим образом. Среди элементов последней строки выбираем наибольший по модулю отрицательный коэффициент (это -3) и второй столбец принимаем как разрешающий. Если же все коэффициенты столбца неположительные, то .
Для определения разрешающей строки свободные коэффициенты делим на соответствующие элементы разрешающего столбца и выбираем минимальное отношение, при этом отрицательные коэффициенты не берем. Имеем , вторая строка является разрешающей. Пересечение разрешающей строки и столбца дает разрешающий элемент – это 3.

Вот полный и качественный алгоритм: (сам реализовал на…23 декабря 2006

3. Заполняем вторую симплексную таблицу. Переменные на пересечении которых получаем разрешающий элемент, меняем местами, т.е. и . Разрешающий элемент заменяем ему обратным, т.е. на . Элементы разрешающей строки и столбца (кроме разрешающего элемента) делим на разрешающий элемент. При этом у коэффициентов разрешающего столбца меняем знак.
Остальные элементы второй таблицы получаем по правилу прямоугольника из элементов первой таблицы. Для заполняемой клетки и клетки с разрешающим элементом составляем прямоугольник. Затем из элемента для заполняемой клетки вычитаем произведение элементов двух других вершин, деленное на разрешающий элемент. Покажем расчеты по этому правилу для заполнения первой строки второй таблицы:
.
Заполнение таблиц по таким правилам продолжаем до тех пор, пока не будет выполнен критерий. Имеем для нашей задачи еще две таблицы.
х 1 х 4 b х 3 х 2 b х 3 -1
х 1 х 2 х 2 х 5 х 5 F -4
F
4. Результат выполнения этого алгоритма записывают следующим образом. В заключительной таблице элемент, стоящий на пересечении строки и столбца b, дает максимальное значение целевой функции. В нашем случае . Значения переменных по строкам равны свободным коэффициентам. Для нашей задачи имеем .
Существуют и другие способы составления и заполнения симплексных таблиц. Например, для этапа 1 в нулевой строке таблицы записывают все переменные и свободные коэффициенты. После нахождения разрешающего элемента по тем же правилам в следующей таблице заменяем переменную в нулевом столбце, а в строке нет. Все элементы разрешающей строки делим на разрешающий элемент, и записываем в новой таблице. Для остальных элементов разрешающего столбца записываем нули. Далее выполняем указанный алгоритм с учетом этих правил.
При решении задачи линейного программирования на минимум в последней строке выбирают наибольший положительный коэффициент, и выполняют указанный алгоритм до тех пор, пока в последней строке не будет положительных коэффициентов.
Программирования | Решение задач линейного программирования средствами Excel
Карта сайта Карта сайта укр
Полезное
Аппаратное и программное обеспечение Графика и компьютерная сфера Интегрированная геоинформационная система Интернет Компьютер Комплектующие компьютера Лекции Методы и средства измерений неэлектрических величин Обслуживание компьютерных и периферийных устройств Операционные системы Параллельное программирование Проектирование электронных средств Периферийные устройства Полезные ресурсы для программистов Программы для программистов Статьи для программистов Cтруктура и организация данных
Полезен материал? Поделись:
2 Алгоритм симплекс-метода. 2.1 Усиленная постановка задачи. 2.2 Алгоритм. 3 Двухфазный симплекс-метод. 1 ноября 2015

программная реализация симплекс-метода на языке Java.  или « = », ограничения вида хi ≥ 0 вводить не надо, симплекс-метод их учитывает в своем алгоритме .


АЛГОРИТМ СИМПЛЕКС-МЕТОДА Прежде всего нужно знать, что симплекс-метод является универсальным методом решения задач линейного программирования

Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — Мида. Симплекс-метод — алгоритм решения


Алгоритм применения симплекс-метода.  Решить симплекс-методом ЗЛП. Решение. Приведем задачу к каноническому виду, введя новые переменные.

Симплекс-метод реализуется в три этапа  Алгоритм решения задач оптимального планирования подробно даётся в учебнике “Информатика” авторы И. Семакин и Е