кэш командирские

кэш командир

Самый быстрый способ просмотреть кэш браузера Mozilla Firefox – набрать в адресной строке, куда вводят URL сайтов, команду about:cache или about:cache?device=disk.

Процессоры PA-RISC компании Hewlett-Packard
Основой разработки современных изделий Hewlett-Packard является архитектура PA-RISC. Она была разработана компанией в 1986 году и с тех пор прошла несколько стадий своего развития благодаря успехам интегральной технологии от многокристального до однокристального исполнения. В сентябре 1992 года компания Hewlett-Packard объявила о создании своего суперскалярного процессора PA-7100, который с тех пор стал основой построения семейства рабочих станций HP 9000 Series 700 и семейства бизнес-серверов HP 9000 Series 800. В настоящее время имеются 33-, 50- и 99 МГц реализации кристалла PA-7100. Кроме того выпущены модифицированные, улучшенные по многим параметрам кристаллы PA-7100LC с тактовой частотой 64, 80 и 100 МГц, и PA-7150 с тактовой частотой 125 МГц, а также PA-7200 с тактовой частотой 90 и 100 МГц. Компания активно разрабатывает процессор следующего поколения HP 8000, которые будет работать с тактовой частотой 200 МГц и обеспечивать уровень 360 единиц SPECint92 и 550 единиц SPECfp92. Появление этого кристалла ожидается в 1996 году. Кроме того, Hewlett-Packard в сотрудничестве с Intel планируют создать новый процессор с очень длинным командным словом (VLIW-архитектура), который будет совместим как с семейством Intel x86, так и семейством PA-RISC. Выпуск этого процессора планируется на 1998 год.
PA 7100
Особенностью архитектуры PA-RISC является внекристальная реализация кэша, что позволяет реализовать различные объемы кэш-памяти и оптимизировать конструкцию в зависимости от условий применения (рисунок 5.11). Хранение команд и данных осуществляется в раздельных кэшах, причем процессор соединяется с ними с помощью высокоскоростных 64-битовых шин. Кэш-память реализуется на высокоскоростных кристаллах статической памяти (SRAM), синхронизация которых осуществляется непосредственно на тактовой частоте процессора. При тактовой частоте 100 МГц каждый кэш имеет полосу пропускания 800 Мбайт/с при выполнении операций считывания и 400 Мбайт/с при выполнении операций записи. Микропроцессор аппаратно поддерживает различный объем кэш-памяти: кэш команд может иметь объем от 4 Кбайт до 1 Мбайт, кэш данных - от 4 Кбайт до 2 Мбайт. Чтобы снизить коэффициент промахов применяется механизм хеширования адреса. В обоих кэшах для повышения надежности применяются дополнительные контрольные разряды, причем ошибки кэша команд корректируются аппаратными средствами.
Рис. 5.11. Блок-схема процессора PA 7100
Процессор подсоединяется к памяти и подсистеме ввода/вывода посредством синхронной шины. Процессор может работать с тремя разными отношениями внутренней и внешней тактовой частоты в зависимости от частоты внешней шины: 1:1, 3:2 и 2:1. Это позволяет использовать в системах разные по скорости микросхемы памяти.

В некоторых процессорных архитектурах кэш-память 1-го уровня разделена на кэш команд (Instruction Cache, I-cache) и кэш данных (Data Cache, D-cache)

Конструктивно на кристалле PA-7100 размещены целочисленный процессор, процессор для обработки чисел с плавающей точкой, устройство управления кэшем, унифицированный буфер TLB, устройство управления, а также ряд интерфейсных схем. Целочисленный процессор включает АЛУ, устройство сдвига, сумматор команд перехода, схемы проверки кодов условий, схемы обхода, универсальный регистровый файл, регистры управления и регистры адресного конвейера. Устройство управления кэш-памятью содержит регистры, обеспечивающие перезагрузку кэш-памяти при возникновении промахов и контроль когерентного состояния памяти. Это устройство содержит также адресные регистры сегментов, буфер преобразования адреса TLB и аппаратуру хеширования, управляющую перезагрузкой TLB. В состав процессора плавающей точки входят устройство умножения, арифметико-логическое устройство, устройство деления и извлечения квадратного корня, регистровый файл и схемы "закоротки" результата. Интерфейсные устройства включают все необходимые схемы для связи с кэш-памятью команд и данных, а также с шиной данных. Обобщенный буфер TLB содержит 120 строк ассоциативной памяти фиксированного размера и 16 строк переменного размера.
Устройство плавающей точки (рисунок 5.12) реализует арифметику с одинарной и двойной точностью в стандарте IEEE 754. Его устройство умножения используется также для выполнения операций целочисленного умножения. Устройства деления и вычисления квадратного корня работают с удвоенной частотой процессора. Арифметико-логическое устройство выполняет операции сложения, вычитания и преобразования форматов данных. Регистровый файл состоит из 28 64-битовых регистров, каждый из которых может использоваться как два 32-битовых регистра для выполнения операций с плавающей точкой одинарной точности. Регистровый файл имеет пять портов чтения и три порта записи, которые обеспечивают одновременное выполнение операций умножения, сложения и загрузки/записи.
Рис. 5.12. Управление командами плавающей точки
Большинство улучшений производительности процессора связано с увеличением тактовой частоты до 100 МГц по сравнению с 66 МГц у его предшественника.
Конвейер целочисленного устройства включает шесть ступеней: Чтение из кэша команд (IR), Чтение операндов (OR), Выполнение/Чтение из кэша данных (DR), Завершение чтения кэша данных (DRC), Запись в регистры (RW) и Запись в кэш данных (DW). На ступени ID выполняется выборка команд. Реализация механизма выдачи двух команд требует небольшого буфера предварительной выборки, который обеспечивает предварительную выборку команд за два такта до начала работы ступени IR. Во время выполнения на ступени OR все исполнительные устройства декодируют поля операндов в команде и начинают вычислять результат операции. На ступени DR целочисленное устройство завершает свою работу. Кроме того, кэш-память данных выполняет чтение, но данные не поступают до момента завершения работы ступени DRC. Результаты операций сложения (ADD) и умножения (MULTIPLY) также становятся достоверными в конце ступени DRC. Запись в универсальные регистры и регистры плавающей точки производится на ступени RW. Запись в кэш данных командами записи (STORE) требует двух тактов. Наиболее раннее двухтактное окно команды STORE возникает на ступенях RW и DW. Однако это окно может сдвигаться, поскольку записи в кэш данных происходят только когда появляется следующая команда записи. Операции деления и вычисления квадратного корня для чисел с плавающей точкой заканчиваются на много тактов позже ступени DW.

4. Адресация. 5. Разрядность. 6. Кэш - память. 7. Технологии расширения команд процессора. 8. Hyper - Threading.

Конвейер проектировался с целью максимального увеличения времени, необходимого для выполнения чтения внешних кристаллов SRAM кэш-памяти данных. Это позволяет максимизировать частоту процессора при заданной скорости SRAM. Все команды загрузки (LOAD) выполняются за один такт и требуют только одного такта полосы пропускания кэш-памяти данных. Поскольку кэши команд и данных размещены на разных шинах, в конвейере отсутствуют какие-либо потери, связанные с конфликтами по обращениям в кэш данных и кэш команд.
Процессор может в каждом такте выдавать на выполнение одну целочисленную команду и одну команду плавающей точки. Полоса пропускания кэша команд достаточна для поддержания непрерывной выдачи двух команд в каждом такте. Отсутствуют какие-либо ограничения по выравниванию или порядку следования пары команд, которые выполняются вместе. Кроме того, отсутствуют потери тактов, связанных с переключением с выполнения двух команд на выполнение одной команды. Специальное внимание было уделено тому, чтобы выдача двух команд в одном такте не приводила к ограничению тактовой частоты. Чтобы добиться этого, в кэше команд был реализован специально предназначенный для этого заранее декодируемый бит, чтобы отделить команды целочисленного устройства от команд устройства плавающей точки. Этот бит предварительного декодирования команд минимизирует время, необходимое для правильного разделения команд.
Потери, связанные с зависимостями по данным и управлению, в этом конвейере минимальны. Команды загрузки выполняются за один такт, за исключением случая, когда последующая команда пользуется регистром-приемником команды LOAD. Как правило компилятор позволяет обойти подобные потери одного такта. Для уменьшения потерь, связанных с командами условного перехода, в процессоре используется алгоритм прогнозирования направления передачи управления. Для оптимизации производительности циклов передачи управления вперед по программе прогнозируются как невыполняемые переходы, а передачи управления назад по программе - как выполняемые переходы. Правильно спрогнозированные условные переходы выполняются за один такт.
Количество тактов, необходимое для записи слова или двойного слова командой STORE уменьшено с трех до двух тактов. В более ранних реализациях архитектуры PA-RISC был необходим один дополнительный такт для чтения тега кэша, чтобы гарантировать попадание, а также для того, чтобы объединить старые данные строки кэш-памяти данных с записываемыми данными. PA 7100 использует отдельную шину адресного тега, чтобы совместить по времени чтение тега с записью данных предыдущей команды STORE. Кроме того, наличие отдельных сигналов разрешения записи для каждого слова строки кэш-памяти устраняет необходимость объединения старых данных с новыми, поступающими при выполнении команд записи слова или двойного слова. Этот алгоритм требует, чтобы запись в микросхемы SRAM происходила только после того, когда будет определено, что данная запись сопровождается попаданием в кэш и не вызывает прерывания. Это требует дополнительной ступени конвейера между чтением тега и записью данных. Такая конвейеризация не приводит к дополнительным потерям тактов, поскольку в процессоре реализованы специальные цепи обхода, позволяющие направить отложенные данные команды записи последующим командам загрузки или командам STORE, записывающим только часть слова. Для данного процессора потери конвейера для команд записи слова или двойного слова сведены к нулю, если непосредственно последующая команда не является командой загрузки или записи. В противном случае потери равны одному такту. Потери на запись части слова могут составлять от нуля до двух тактов. Моделирование показывает, что подавляющее большинство команд записи в действительн

Команды. С помощью команд в Cache ObjectScript осуществляются различные действия.  Таблица 6. Важнейшие команды Cache ObjectScript. Группа команд.

кэш команд. instruction cache.  Кэш-память — Кэш (англ. cache[1], произносится kæʃ кЭш) промежуточный буфер с быстрым доступом, содержащий копию той


Чтобы полностью очистить кэш, выполните команду netsh interface ip delete arpcache. Она удалит весь ARP-кэш, и при следующем подключении к сети он начнет

Кэш команд 512 линий по 16 байт = 8192 байт может быть активизирован, остановлен и уменьшен в 2 раза через CARC. Кэш ветвления (Branch Cache)


Помимо этого, кэш L2 обслуживает заявки от кэша L1, устройства трансляции адресов (Translation Lookaside Unit, TLU), а также запросы на подкачку кода от буфера команд

Консольная утилита apt-cache используется для поиска в кеше программных пакетов APT.  APT-CACHE – 5 полезных основных команд.


Разработка функциональной схемы КЭШ памяти команд и данных. КЭШ-память (CashMemory) – сверхоперативная память (СОЗУ).

Особенности 6х86: кэш 16 Кбайт, дополнительный кэш для команд 256 б; технология изготовления 0,5 микрон (0,65 для Р120+); количество транзисторов около 3 млн.


Внутренняя кэш-память процессора R4000 имеет емкость 16 Кбайт. Она разделена на 8 Кбайт кэш команд и 8 Кбайт кэш данных.

Консольная утилита apt-cache используется для поиска в кеше программных пакетов  Например, вы хотите найти описание пакета vsftpd: чтобы сделать это, команда


Кэш команд, расположенный на кристалле процессора ADSP_2106x, является. ассоциативным и может хранить до 32_х команд.

Он имеет внутренний кэш емкостью 36 Кб (20 Кб - кэш команд и 16 Кб - кэш данных), раздельные конвейеры целочисленной и вещественной арифметики и при тактовой


Она разделена на 8-Кб кэш команд и 8-Кб кэш данных. С точки зрения реализации кэш-памяти процессор R4400 имеет более развитые возможности.

В левой верхней части рис. 4.33 изображен 4-входовый ассоциативный кэш команд емкостью 32 Кбайт с 32-байтными строками.