математическое ожидание случайной величины вычислить

вычислить математическое ожидание случайной величины

Составить подпрограмму, которая вычисляет математическое ожидание (Mx), дисперсию (Dx) и среднеквадратичное отклонение (Fx) случайной величины X.18 марта 2012

Нахождение НОД и НОК Разложение числа на простые множители Сравнения по модулю Операции над множествами Операции над векторами Разложение вектора по базису. Доказательство, что векторы образуют базис Чертёж треугольника по координатам вершин Решение треугольника Решение Пирамиды Построение Пирамиды по координатам вершин Чертёж многоугольника по координатам вершин Решение систем методом Крамера и Матричным Онлайн построение графика кривой 2-го порядка Определение вида кривой или поверхности 2-го порядка по инвариантам МНК и регрессионный анализ Онлайн + графики
Алгоритмы JavaScript
Логика предикатов Логические операции над предикатами Кванторные операции над предикатами Формулы логики предикатов Тавтологии логики предикатов Преобразования формул и следование их предикатов Проблемы разрешения для общезначимости и выполнимости формул Применение логики предикатов в математике Строение математических теорем Аристотелева силлогистика и методы рассуждений Принцип полной дизъюнкции в предикатной форме Метод полной математической индукции Необходимые и достаточные условия Логика предикатов и алгебра множеств Формализованное исчисление предикатов Неформальные и формаль-
ные аксиоматические теории
Конечные автоматы и регулярные языки Алфавит, слово, язык в программировании Порождающие грамматики (грамматики Хомского) Классификация грамматик и языков Регулярные языки и регулярные выражения Конечные автоматы Допустимость языка конечным автоматом Теорема Клини Детерминизация конечных автоматов Минимизация конечных автоматов Лемма о разрастании для регулярных языков Обоснование алгоритма детерминизации автоматов Конечные автоматы с выходом Морфизмы и конечные подстановки Машины Тьюринга Контекстно-свободные языки
Контекстно-свободные языки и грамматики Приведенная форма КС-грамматики Лемма о разрастании для КС-языков Магазинные автоматы (автомат с магазинной памятью) Алгоритм построения МП-автомата по КС-грамматике Алгоритм построения КС-грамматики по МП-автомату Алгебраические свойства КС-языков Основное свойство суперпозиции КС-языков Пересечение контекстно-свободных языков Методы синтаксического анализа КС-языков Восходящий синтаксический анализ и LR(k)-грамматики Семантика формальных языков Принцип индукции по неподвижной точке Графовое представление МП-автоматов
Интегральное исчисление
Неопределенный и определенный интегралы Свойства интегралов Интегрирование по частям Интегрирование методом замены переменной Интегрирование различных рациональных функций Интегрирование различных иррациональных функций Интегрирование различных тригонометрических функций Определенный интеграл и его основные свойства Необходимое и достаточное условие интегрируемости Теоремы существования первообразной Свойства определенных интегралов Несобственные интегралы Интегральное определение логарифмической функции Приложения интегралов

Лабораторная работа № 5. Математическое ожидание. дискретной случайной величины.  Вычислить M(X) для случайной величины X - чистого выигрыша по данным

Инвестиции: экономическая сущность и классификация Государственное регулирование инвестиционной деятельности Источники финансовых ресурсов на капитальные вложения Инвестиции в основные фонды Оценка состояния основных фондов Амортизация основных фондов Капитальное строительство в инвестиционном процессе Планирование инвестиций в форме капитальных вложений Экономическая эффективность инвестиций Финансирование капитальных вложений Кредитование капитальных вложений Кредитоспособность Финансирование и кредитование затрат Финансирование и кредитование инвестиционной деятельности потребительской кооперации Финансирование и кредитование капитальных вложений потребительской кооперации Инвестиционное строительное проектирование Анализ инвестиций
Концепция построения международных стандартов финансовой отчетности (МСФО) Экономическое содержание международных стандартов финансовой отчётности Цели и принципы оценки стоимости акций и активов компании Оценка акций и активов предприятия по справедливой стоимости Методы оценки справедливой стоимости акций предприятия Затратный подход к оценки стоимости компаний и акций Сравнительный подход к оценки стоимости предприятий и акций Доходный подход к оценке стоимости компании и акций Выбор ставки дисконтирования при инвестировании в акции Метод капитализации прибыли Сравнение подходов к оценке стоимости компаний и пакетов акций Форвардные контракты
Метрические понятия и аксиомы геометрии Равенство и подобие геометрических фигур Бинарные отношения Вектор, его направление и длина Линейные операции над векторами Линейная зависимость и независимость векторов Отношение коллинеарных векторов Проекции векторов на прямую и на плоскость Угол между векторами Ортогональные проекции векторов Координата вектора на прямой и базис Координаты вектора на плоскости и базис Координаты вектора в пространстве и базис Операции над векторами в координатной форме Ортогональный и ортонормированный базисы Cкалярное произведение векторов и его свойства Выражение скалярного произведения через координаты векторов Векторное произведение векторов и его свойства Смешанное произведение векторов и его свойства Ориентированные площади и объемы Двойное векторное произведение и его свойства Применение векторов в задачах на аффинные свойства фигур Применение произведений векторов при решении геометрических задач Применение векторной алгебры в механике Системы координат

F(x)= Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины. Вычислить вероятность того, что случайная величина Х примет значение в интервале (3; 4). 4 ноября 2015

Алгебраические линии на плоскости Общие уравнения геометрических мест точек Алгебраические уравнения линий на плоскости Уравнения прямой, проходящей через точку перпендикулярно вектору Уравнения прямой, проходящей через точку коллинеарно вектору Уравнения прямой, проходящей через две точки Уравнения прямой с угловым коэффициентом Взаимное расположение прямых Примеры задач с прямыми на плоскости Системы неравенств с двумя неизвестными Системы линейных уравнений с двумя неизвестными Линии 2-го порядка
Евклидовы пространства Ортогональные векторы евклидова пространства Ортогональный базис евклидова пространства Ортонормированный базис евклидова пространства Ортогональные дополнения в евклидовом пространстве Задача о перпендикуляре Матрица и определитель Грама и его свойства Линейные преобразования евклидовых пространств Канонический вид ортогонального оператора евклидова пространства Сопряженные операторы евклидова пространства Самосопряженные операторы евклидова пространства Приведение квадратичной формы к главным осям Унитарные пространства и их линейные преобразования
Комплексный анализ
Определение функции случайных величин. Функция дискретного случайного аргумента и ее числовые характеристики. Функция непрерывного случайного аргумента и ее числовые характеристики. Функции двух случайных аргументов. Определение функции распределения вероятностей и плотности для функции двух случайных аргументов.
Закон распределения вероятностей функции одной случайной величины
При решении задач, связанных с оценкой точности работы различных автоматических систем, точности производства отдельных элементов систем и др., часто приходится рассматривать функции одной или нескольких случайных величин. Такие функции также являются случайными величинами. Поэтому при решении задач необходимо знать законы распределения фигурирующих в задаче случайных величин. При этом обычно известны закон распределения системы случайных аргументов и функциональная зависимость.
Таким образом, возникает задача, которую можно сформулировать так.
Дана система случайных величин , закон распределения которой известен. Рассматривается некоторая случайная величина Y как функция данных случайных величин:
Если же среди чисел есть одинаковые, то каждой группе одинаковых значений нужно отвести в таблице один столбец и соответствующие вероятности сложить.
Для непрерывных случайных величин задача ставится так: зная плотность распределения случайной величины , найти плотность распределения случайной величины . При решении поставленной задачи рассмотрим два случая.
Предположим сначала, что функция является монотонно возрастающей, непрерывной и дифференцируемой на интервале , на котором лежат все возможные значения величины . Тогда обратная функция существует, при этом являясь также монотонно возрастающей, непрерывной и дифференцируемой. В этом случае получаем
Заметим, что рассуждения не изменяются, если введенную новую величину положить равной .
Математическое ожидание функции случайных величин
На практике часто встречаются случаи, когда нет особой надобности полностью определять закон распределения функции случайных величин, а достаточно только указать его числовые характеристики. Таким образом, возникает задача определения числовых характеристик функций случайных величин помимо законов распределения этих функций.
Пусть случайная величина является функцией случайного аргумента с заданным законом распределения
(6.4)
так как величина, определяемая формулой (6.4), не может измениться от того, что под знаком суммы некоторые члены будут заранее объединены, а порядок членов изменен.
Формула (6.4) не содержит в явном виде закон распределения самой функции , а содержит только закон распределения аргумента . Таким образом, для определения математического ожидания функции вовсе не требуется знать закон распределения функции , а достаточно знать закон распределения аргумента .
Для непрерывной случайной величины математическое ожидание вычисляется по формуле
т. е. корреляционный момент двух функций случайных величин равен математическому ожиданию произведения этих функций минус произведение из математических ожиданий.
Рассмотрим основные свойства корреляционного момента и коэффициента корреляции.
Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не изменяются.
Свойство 2. Для любых случайных величин и абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий данных величин:
Сингулярные случайные величины 13. Математическое ожидание случайной величины 15.  Однако вычислять математическое ожидание дискретной случайной величины, конечно, удобнее по формуле (37.2).

Вычислим математические ожидания этих величин  Отклонение случайное величины от ее математического ожидания. Пусть - случайная величина и - ее математическое ожидание.28 октября 2015


Свойства математического ожидания. Математическое ожидание постоянной величины равно самой этой величине M(C) = C.  Вычислить дисперсию этой случайной величины.

Вычислим математическое ожидание для случайной величины из примера 6.1. Подставляя возможные значения 0 и 1 и соответствующие им вероятности в формулу (6.3), получаем


· Вычислить математическое ожидание непрерывной случайной величины, заданной плотностью вероятности. Решение. . О.4.9. Модой (Моx) случайной величины x называется ее наиболее вероятностное значение.

Вычислим математическое ожидание и дисперсию биномиального распределения (смотрите темы (17.4) , (19.3)) , используя свойства математического ожидания и дисперсии. Введем случайные величины


Примеры вычисления математического ожидания случайной величины 17.  Однако вычислять математическое ожидание дискретной случайной величины, конечно, удобнее по формуле (37.2).

Математическое ожидание случайной величины (погрешности)– это такое её значение, вокруг которого группируются  При большом числе n значений случайной величины х в выборке оценку их СКО можно вычислить по формуле (для любого


Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина.  Вычислим дисперсии случайных величин Х и Y, рассмотренных в начале этого раздела.

Однако вычислять математическое ожидание дискретной случайной величины, конечно, удобнее по формуле (37.2). Выражение (37.4) можно представить через функцию распределения случайной величины .


Замечание 2. Величина X — случайная, то есть может принимать случайные значения, но математическое ожидание MX, вычисляемое на основе закона распределения, есть число не случайное

Таблица распределения случайной величины будет. Математическое ожидание вычисляем по формуле (1): Пример 2. Производится один выстрел по объекту.


Распределение Пуассона. Математическое ожидание дискретной случайной величины, его свойства.  Вычислим математическое ожидание биномиальной случайной величины X – числа наступления события A в n опытах.

Закон распределения случайной величины, дисперсия, математическое ожидание  pi необходимо вычислить по формулам, указанным выше.


Математическое ожидание случайной величины x обозначается M(x). При помощи нашей программы Вы можете найти математическое ожидание онлайн, прямо на сайте.

Математическое ожидание Mx случайной величины x равно.  В условиях предыдущего примера вычислить дисперсию и среднеквадратическое отклонение случайной величины x.


 

Меню