описание алгоритма решения на

описание алгоритма решения алгебра

АЛГОРИТМ РЕШЕНИЯ В разделе "Алгоритм решения" следует приводить: 1) описание логики алгоритма и способа формирования результатов решения с

Данный документ содержит описание схемы, по которой предлагается описывать свойства и структуру каждого алгоритма. Описание состоит из двух частей. В первой части описываются собственно алгоритмы и их свойства, а вторая посвящена описанию особенностей их программной реализации с учетом конкретных программно-аппаратных платформ. Такое деление на части сделано для того, чтобы машинно-независимые свойства алгоритмов, которые определяют качество их реализации на параллельных вычислительных системах, были бы выделены и описаны отдельно от множества вопросов, связанных с последующими этапами программирования алгоритмов и исполнения результирующих программ.
Общая схема описания алгоритмов имеет следующий вид:
Содержание
1 ЧАСТЬ. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 ЧАСТЬ. Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
3 Литература 1 ЧАСТЬ. Свойства и структура алгоритмов
Свойства алгоритмов никак не зависят от вычислительных систем, и с этой точки зрения данная часть AlgoWiki имеет безусловную собственную ценность. Описание алгоритма делается один раз, после чего многократно используется для его реализации в различных программно-аппаратных средах. Несмотря на то, что в данной части мы рассматриваем лишь машинно-независимые свойства алгоритмов, соображения, важные на этапе реализации, или же ссылки на соответствующие пункты части II AlgoWiki, здесь также вполне уместны.
1.1 Общее описание алгоритма
В данном разделе представляется самый первый вариант описания тех задач (или классов задач), для решения которых предназначен алгоритм. В описании поясняются особенности как алгоритма, так и объектов, с которыми он работает. Если описание соответствует целому классу схожих по структуре алгоритмов, либо же посвящено описанию отдельного представителя некоторого класса, то это здесь указывается явно. Описываются базовые математические свойства и структура входных данных. При необходимости, в описании могут присутствовать формулы, а также даваться ссылки на описания других используемых алгоритмов. Данное описание должно быть достаточным для однозначного понимания сути решаемой задачи.

Описание алгоритма решения задачи. Дата добавления: 2014-01-06; просмотров: 267; лекция была полезна: 0 студентам(у); не полезна: 0 студентам(у)

1.2 Математическое описание алгоритма
Приводится математическое описание решаемой задачи в виде совокупности формул и соотношений, как это принято в книгах и учебниках. По возможности, используются общепринятые обозначения и способы записи. Должны быть явно определены все использованные обозначения и описаны свойства входных данных. Представленное описание должно быть достаточным для однозначного понимания постановки решаемой задачи для человека, знающего математику.
1.3 Вычислительное ядро алгоритма
В описываемом алгоритме выделяется и описывается вычислительное ядро, т.е. та часть алгоритма, на которую приходится основное время работы алгоритма. Если в алгоритме несколько вычислительных ядер, то отдельно описывается каждое ядро. Описание может быть сделано в достаточно произвольной форме: словесной или с использованием языка математических формул. Вычислительное ядро может полностью совпадать с описываемым алгоритмом.
1.4 Макроструктура алгоритма
Если алгоритм использует в качестве составных частей другие алгоритмы, то это указывается в данном разделе. Если в дальнейшем имеет смысл описывать алгоритм не в максимально детализированном виде (т.е. на уровне арифметических операций), а давать только его макроструктуру, то здесь описывается структура и состав макроопераций. Если в других разделах описания данного алгоритма в рамках AlgoWiki используются введенные здесь макрооперации, то здесь даются пояснения, необходимые для однозначной интерпретации материала. Типичные варианты макроопераций, часто встречающиеся на практике: нахождение суммы элементов вектора, скалярное произведение векторов, умножение матрицы на вектор, решение системы линейных уравнений малого порядка, сортировка, вычисление значения функции в некоторой точке, поиск минимального значения в массиве, транспонирование матрицы, вычисление обратной матрицы и многие другие.
Описание макроструктуры очень полезно на практике. Параллельная структура алгоритмов может быть хорошо видна именно на макроуровне, в то время как максимально детальное отображение всех операций может сильно усложнить картину. Аналогичные аргументы касаются и многих вопросов реализации, и если для алгоритма эффективнее и/или технологичнее оставаться на макроуровне, оформив макровершину, например, в виде отдельной процедуры, то это и нужно отразить в данном разделе.

Тип: Реферат; Size: 165.04 Kb.; Вариант 17 Описание алгоритма решения задачи Выбор ппп результат выполнения контрольного примера.

Выбор макроопераций не однозначен, причем, выделяя различные макрооперации, можно делать акценты на различных свойствах алгоритмов. С этой точки зрения, в описании одного алгоритма может быть представлено несколько вариантов его макроструктуры, дающих дополнительную информацию о его структуре. На практике, подобные альтернативные формы представления макроструктуры алгоритма могут оказаться исключительно полезными для его эффективной реализации на различных вычислительных платформах.
1.5 Схема реализации последовательного алгоритма
Здесь описываются все шаги, которые нужно выполнить при последовательной реализации данного алгоритма. В некотором смысле, данный раздел является избыточным, поскольку математическое описание уже содержит всю необходимую информацию. Однако он, несомненно, полезен: схема реализации алгоритма выписывается явно, помогая однозначной интерпретации приводимых далее оценок и свойств.
Описание может быть выполнено в виде блок-схемы, последовательности математических формул, обращений к описанию других алгоритмов, фрагмента кода на Фортране, Си или другом языке программирования, фрагмента кода на псевдокоде и т.п. Главное - это сделать схему реализации последовательного алгоритма полностью понятной. Совершенно не обязательно все шаги детализировать до элементарных операций, отдельные шаги могут соответствовать макрооперациям, отвечающим другим алгоритмам.
Описание схемы реализации вполне может содержать и словесные пояснения, отражающие какие-либо тонкие нюансы самого алгоритма или его реализации. Уже в данном разделе можно сказать про возможный компромисс между объемом требуемой оперативной памяти и временем работы алгоритма, между используемыми структурами данных и степенью доступного параллелизма. В частности, часто возникает ситуация, когда можно ввести дополнительные временные массивы или же отказаться от использования специальных компактных схем хранения данных, увеличивая степень доступного параллелизма.
1.6 Последовательная сложность алгоритма
В данном разделе описания свойств алгоритма приводится оценка его последовательной сложности, т.е. числа операций, которые нужно выполнить при последовательном исполнении алгоритма (в соответствии с п.1.5). Для разных алгоритмов понятие операции, в терминах которой оценивается его сложность, может существенно различаться. Это могут быть операции для работы с вещественными числами, целыми числами, поразрядные операции, обращения в память, обновления элементов массива, элементарные функции, макрооперации и другие. В LU-разложении преобладают арифметические операции над вещественными числами, а для транспонирования матриц важны лишь обращения к памяти: это и должно найти отражение в описании.
Если выбор конкретного типа операций для оценки сложности алгоритма не очевиден, то нужно привести обоснование возможных вариантов. В некоторых случаях можно приводить оценку не всего алгоритма, а лишь его вычислительного ядра: в таком случае это нужно отметить, сославшись на п.1.1.
Например, сложность алгоритма суммирования элементов вектора сдваиванием равна $ n-1 $. Сложность быстрого преобразования Фурье (базовый алгоритм Кули-Тьюки) для векторов с длиной, равной степени двойки – $ nlog_2n $ операций комплексного сложения и $ (nlog_2n)/2 $ операций комплексного умножения. Сложность базового алгоритма разложения Холецкого (точечный вариант для плотной симметричной и положительно-определенной матрицы) это $ n $ вычислений квадратного корня, $ n(n-1)/2 $ операций деления, по $ (n^3-n)/6 $ операций умножения и сложения (вычитания).
1.7 Информационный граф
Это очень важный раздел описания. Именно здесь можно показать (увидеть) как устроена параллельная структура алгоритма, для чего приводится описание и изображение его информационного графа ( графа алгоритма [1]). Для рисунков с изображением графа будут составлены рекомендации по их формированию, чтобы все информационные графы, внесенные в энциклопедию, можно было бы воспринимать и интерпретировать одинаково. Дополнительно можно привести полное параметрическое описание графа в терминах покрывающих функций [1].
Интересных вариантов для отражения информационной структуры алгоритмов много. Для каких-то алгоритмов нужно показать максимально подробную структуру, а иногда важнее макроструктура. Много информации несут разного рода проекции информационного графа, выделяя его регулярные составляющие и одновременно скрывая несущественные детали. Иногда оказывается полезным показать последовательность в изменении графа при изменении значений внешних переменных (например, размеров матриц): мы часто ожидаем "подобное" изменение информационного графа, но это изменение не всегда очевидно на практике.
В целом, задача изображения графа алгоритма весьма нетривиальна. Начнем с того, что это потенциально бесконечный граф, число вершин и дуг которого определяется значениями внешних переменных, а они могут быть ве

Описание алгоритма решения задачи Для решения данной задачи воспользуемся СУБД MS Access и создадим новую базу данных. ^

Словесное описание алгоритма.  Если ложь - вычислить и вывести два решения. Конец алгоритма.


Описание алгоритма. Новости Теория Визуализаторы Что почитать Ссылки О нас.  Алгоритм решения поставленной задачи.

процедурные (алгоритмические) (Basic, Pascal, C и др.), которые предназначены для однозначного описания алгоритмов; для решения задачи процедурные языки


Способы описания алгоритмов. Перейти к списку задач и тестов по теме "Понятие алгоритма.

Итак, определена тема урока: «Алгоритмы. Их свойства и способы описания».  Например, прочесть алгоритм решения уравнения сможет и первоклассник, а


Словесно – формульное описание алгоритма решения задачи 1.1  Графическое описание алгоритма, т.е. описание алгоритма с помощью схем.

4. Описание алгоритма решения задачи  6. Описание алгоритма с помощью выбранных программных средств


Описание. Примечания. Начало и конец алгоритма.  Существует много разных алгоритмов для решения этой задачи и все они со своими преимуществами и

Алгоритм означает точное описание некоторого процесса  Алгоритмизация – это техника разработки (составления) алгоритма для решения задач на ЭВМ.


Пример циклического алгоритма. Этапы подготовки и решения задач на ЭВМ.  Само по себе математическое описание задачи в большинстве случаев трудно перевести

способность алгоритма обеспечить решение однотипных задач с различными  8.2. Графический способ описания (блок-схема). Для составления алгоритма в виде


Описание алгоритма решения - раздел Программирование, Игра в шашки человек - компьютер Описание Алгоритма Решения.

В процессе разработки алгоритма решения задачи можно выделить следующие этапы  Этап 1. Математическое описание решения задачи.