вычислить обратную матрицу онлайн

вычислить обратную матрицу пример

Обратная матрица. Виды матриц. Ранг матрицы.  Допустим, C - вторая обратная матрица для матрицы A . Докажем, что B = C . Вычислим произведение BAC двумя

Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k, которая получается из элементов матрицы А, находящихся в выбранных k строках и k столбцах. ( k не превосходит наименьшего из чисел m или n).
Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой, и всех столбцов, кроме j-ого, квадратной матрицы А порядка n на n обозначим как .
Иными словами, минор получается из квадратной матрицы А порядка n на n вычеркиванием элементов i-ой строки и j-ого столбца.
Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров: и .
Алгебраическим дополнением элемента квадратной матрицы называют минор (n-1)-ого порядка, который получается из матрицы А, вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .
Алгебраическое дополнение элемента обозначается как . Таким обрзом, .
Например, для матрицы алгебраическое дополнение элемента есть .
Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделе вычисление определителя матрицы:
На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где - транспонированная матрица, элементами которой являются алгебраические дополнения .
Матрица действительно является обратной для матрицы А, так как выполняются равенства . Покажем это
Составим алгоритм нахождения обратной матрицы с использованием равенства .
Вычисляем определитель матрицы А и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима).
Строим - матрицу из алгебраических дополнений элементов .
Транспонируем матрицу , тем самым получаем .
Умножаем каждый элемент матрицы на число . Этой операцией завершается нахождение обратной матрицы .
Проводим проверку результата, вычисляя произведения и . Если , то обратная матрица найдена верно, в противном случае где-то была допущена ошибка.
Разберем алгоритм нахождения обратной матрицы на примере.
К началу страницы Нахождение обратной матрицы методом Гаусса-Жордана.
Существуют альтернативные методы нахождения обратной матрицы, например, метод Гаусса - Жордана.
Суть метода Гаусса-Жордана заключается в том, что если с единичной матрицей Е провести элементарные преобразованиия, которыми невырожденная квадратная матрица А приводится к Е, то получится обратная матрица .

Как найти обратную матрицу 3х3. 2 методика:Классический способ векторного  Вычислите D = c ^ c1 ^ c2, где «^» обозначает векторное произведение.

Опишем алгоритм приведения матрицы А порядка n на n, определитель которой не равен нулю, к единичной матрице методом Гаусса - Жордана. После описания алгоритма разберем пример, чтобы все стало понятно.
Сначала преобразуем матрицу так, чтобы элемент стал равен единице, а все остальные элементы первого столбца стали нулевыми.
Если , то на место первой строки ставится k-ая строка ( k>1), в которой , а на место k-ой строки ставится первая. (Строка с обязательно существует, в противном случае матрица А – вырожденная). После перестановки строк получили «новую» матрицу А, у которой .
Теперь умножаем каждый элемент первой строки на . Так приходим к «новой» матрице А, у которой . Далее к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на . К элементам третьей строки – соответствующие элементы первой строки, умноженные на . И продолжаем такой процесс до n-ой строки включительно. Так все элементы первого столбца матрицы А, начиная со второго, станут нулевыми.
С первым столбцом разобрались, переходим ко второму.
Преобразуем матрицу А так, чтобы элемент стал равен единице, а все остальные элементы второго столбца, начиная с , стали нулевыми.
Если , то на место второй строки ставится k-ая строка ( k>2), в которой , а на место k-ой строки ставится вторая. Так получаем преобразованную матрицу А, у которой . Умножаем все элементы второй строки на . После этого к элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на . К элементам четвертой строки – соответствующие элементы второй строки, умноженные на . И продолжаем такой процесс до n-ой строки включительно. Так все элементы второго столбца матрицы А, начиная с третьего, станут нулевыми, а будет равен единице.
Со вторым столбцом закончили, переходим к третьему и проводим аналогичные преобразования.
Так продолжаем процесс, пока все элементы главной диагонали матрицы А не станут равными единице, а все элементы ниже главной диагонали не станут равными нулю.
С этого момента начинаем обратный ход метода Гаусса-Жордана. Теперь преобразуем матрицу А так, чтобы все элементы n-ого столбца, кроме , стали нулевыми. Для этого к элементам (n-1)-ой строки прибавляем соответствующие элементы n-ой строки, умноженные на . К элементам (n-2)-ой строки – соответствующие элементы n-ой строки, умноженные на . И продолжаем такой процесс до первой строки включительно. Так все элементы n-ого столбца матрицы А (кроме ), станут нулевыми.
С последним столбцом разобрались, переходим к (n-1)-ому.

Нахождение(вычисление, определение)обратной матрицы - OnLine Калькулятор : [A] -1.  А зачем нужно искать обратную матрицу?

Преобразуем матрицу А так, чтобы все элементы (n-1)-ого столбца до , стали нулевыми. Для этого к элементам (n-2)-ой строки прибавляем соответствующие элементы (n-1)-ой строки, умноженные на . К элементам (n-3)-ой строки – соответствующие элементы (n-1)-ой строки, умноженные на . И продолжаем такой процесс до первой строки включительно. Так все элементы (n-1)-ого столбца матрицы А (кроме ), станут нулевыми.
Действуя дальше схожим образом, мы получим единичную матрицу.
Так как , а , то переставим местами первую и вторую строки матрицы, получим матрицу .
Умножим все элементы первой строки матрицы на : .
К элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на 0, а к элементам третьей строки прибавляем соответствующие элементы первой строки, умноженные на (-4):
Переходим ко второму столбцу.
Элемент полученной матрицы уже равен единице, поэтому нет необходимости производить умножение элементов второй строки на . К элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на :
Переходим к третьему столбцу.
Умножим элементы третьей строки на : .
Единицы на главной диагонали матрицы получены, так что приступаем к обратному ходу.
К элементам второй строки прибавляем соответствующие элементы третьей строки, умноженные на (-2), а к элементам первой строки прибавляем соответствующие элементы третьей строки, умноженные на :
В последнем столбце необходимые нулевые элементы получены, переходим к предпоследнему (ко второму) столбцу.
К элементам первой строки прибавим соответствующие элементы второй строки, умноженные на : .
Так проведены все преобразования матрицы и получена единичная матрица.
Пришло время применить метод Гаусса – Жордана к нахождению обратной матрицы.
В левой части страницы будем проводить преобразования Гаусса – Жордана с матрицей А, а в правой части страницы будем проделывать те же преобразования с единичной матрицей.
Так как , а , то переставим первую и вторую строки местами:
Умножим элементы первой строки матрицы на одну вторую, чтобы элемент стал равен единице:
К элементам второй строки прибавим соответствующие элементы первой строки, умноженные на 0, к элементам третьей строки прибавим соответствующие элементы первой строки, умноженные на 2, к элементам четвертой строки – элементы первой строки, умноженные на 5:
Так в первом столбце матрицы А мы получили нужные нулевые элементы. Переходим ко второму столбцу. Добьемся того, чтобы элемент стал равен единице. Для этого умножим элементы второй строки матрицы на , не забываем выполнять такие же преобразования с матрицей в правой части:
Дальше нам нужно сделать элементы и нулевыми, для этого к элементам третьей строки прибавляем соответствующие элементы второй строки, умноженные на 0, а к элементам четвертой строки прибавляем соответствующие элементы второй строки, умноженные на :
Так второй столбец матрицы А преобразован к нужному виду. Переходим к третьему столбцу. Так как элемент нулевой, то меняем местами третью и четвертую строки:
Умножаем элементы третьей строки на :
Третий столбец матрицы А принял нужный вид (элемент нулевой, поэтому не пришлось к элементам четвертой строки прибавлять соответствующие элементы третьей строки, умноженные на ). Осталось умножить четвертую строку на чтобы все элементы главной диагонали стали равны единице:
Прямой ход метода Гаусса-Жордана завершен, приступаем к обратному ходу. Получаем необходимые нулевые элементы в последнем столбце матрицы А. Для этого к элементам третьей строки прибавляем соответствующие элементы последней строки, умноженные на , к элементам второй строки – элементы последней строки, умноженные на , к элементам первой строки – элементы последней строки, умноженные на 0:
Получаем нули в предпоследнем столбце прибавлением к элементам второй и первой строк соответствующие элементы третьей строки, умноженные на и 0 соответственно:
Осталось последнее преобразование. К элементам первой строки прибавляем элементы второй строки, умноженные на :
Итак, матрица А преобразованиями Гаусса – Жордана приведена к единичной матрице, а единичная матрица с помощью таких же преобразований приведена к обратной матрице. Таким образом, в правой части получена обратная матрица. Можете провести проверку, выполнив умножение матрицы А на обратную матрицу.
К началу страницы Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.
Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы А порядка n на n.
Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.
Идея очень проста. Обозначим обратную матрицу как X, то есть, . Так как по определению обратной матрицы , то
Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений
Решаем их любым способом и из найденны

Чтобы найти матрицу А-1 , обратную для матрицы А , необходимо: - вычислить определитель матрицы (D А= -3 )

Матрица А-1 называется обратной матрицей по отношению к матрице А, если А*А-1 = Е, где Е — единичная матрица n-го порядка.


Вычислим определители, стоящие слева и справа  ОБРАТНАЯ МАТРИЦА. Понятие обратной матрицы вводится только для квадратных матриц.

Матрица В называется обратной к матрице А, если АВ=ВА=Е. Обратная матрица к матрице А  Вычислить все алгебраические дополнения Aij элементов матрицы.


4. Вычисляем обратную матрицу .  Итак, в качестве обратной матрицы можно взять матрицу , так как .

Дана матрица . Найти обратную матрицу. Р е ш е н и е: Вычисляем определитель матрицы A